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Effect of the anisotropic surface tension, crystallization kinetics, and heat diffusion
on nonequilibrium growth of liquid crystals
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The morphologies of a homeotropic smectic-B germ growing into an undercooled homeotropic or planar
nematic melt were studied. The two sets of growth shapes observed in the experiment were reproduced by
computer simulations using a phase-field model. From the comparison of the experiment and numerical simu-
lations we give an estimate for the anisotropy of the surface tension and the kinetic coefficient for the case of
the homeotropic nematic melt. In the case of the planarly aligned melt the twofold anisotropy of the nematic
superimposes onto the hexagonal symmetry of the smecticB. An explanation of the phenomenon of the
‘‘inverted growth’’ is given.@S1063-651X~98!09511-7#

PACS number~s!: 81.10.Aj, 61.30.2v, 64.70.Md
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I. INTRODUCTION

The solidification of a simple, pure substance through f
growth of a crystalline germ into its melt is a well-studie
process which leads to interfacial patterns@1#. In the usual
description one considers a temperature fieldT(r ,t) which
satisfies the diffusion equation~1.1! on both sides of the
moving sharp interface separating the two phases. The
mal velocity of the interfacevn is determined from the hea
conservation condition~1.2! together with the Gibbs-
Thomson relation~1.3!, which involves the angular depen
dent surface tensions~u! and a linear kinetic termb(u)vn ,
whereu is the angle between the surface normal and a
erence direction — thex axis. We consider a two
dimensional system in thexy plane.

]T

]t
5D¹2T, ~1.1!

Lyn5Dsolidcp
solid~“nT!solid2D liquidcp

liquid~“nT! liquid ,
~1.2!

Tinterface5Tm2
Tm

L
@s~u!1s9~u!#k2b~u!yn . ~1.3!

The parameters areTm — melting temperature,L — latent
heat per unit volume,cp — specific heat per unit volume
D — heat diffusion coefficient, andk — the local curvature
of the interface. The undercoolingDT5Tm2T` enters as a
boundary condition (T` is the temperature far away from th
germ!.

Since in the usual growth process the germ remains p
tically isothermal atTm , the heat current in the solid phas
@the first term on the right hand side of Eq.~1.2!# is small
compared to that in the liquid phase. For this reason
growth process is rather insensitive to the precise value
Dsolid andcp

solid. Thus, for simplicity, we use everywhere th
material parameters of the liquid phase. As usual, any t
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perature dependence of the material parameters is negle
This could become problematic when the type of transit
becomes only weakly first order, which is probably not t
case here.

It is useful to introduce dimensionless parameters by s
ing lengths in some arbitrary reference lengthv ~usually
chosen of the order of the size of the well-developed ger!,
while times are scaled byv2/D. The angular dependence o
the surface tension and that of the kinetic coefficient is se
rated from their angular averages (s0 andb0) by writing

s~u!5s0s̃~u!, b~u!5b0b̃~u!. ~1.4!

With u(r ,t)5(T2Tm)/DT one then has

]u

]t
5¹2u, ~1.5!

yn5@~“nu!solid2~“nu! liquid#D, ~1.6!

uinterface52
&

12aD
$@s̃~u!1s̃9~u!#k1t0b̃~u!yn%.

~1.7!

The dimensionless parameters of the system are

D5
cpDT

L
, ~1.8!

a5
&vL2

12cps0Tm
5
&v

12d0
, ~1.9!

t05
LDb0

Tms0
. ~1.10!

In the following we give a brief survey of the literatur
concentrating on the effect of theanisotropiesof the material
parameters on the pattern formation. From analytical and
merical studies of the sharp interface model@Eqs. ~1.5!–
6236 © 1998 The American Physical Society
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~1.7!#, or simplified versions thereof, see, e.g.,@2#, it is well

known that the angular dependence ofs̃ and b̃ plays a cru-
cial role in stabilizing dendritic~or needle crystal! growth. In
the case ofsurface tensiondominated growth a compariso
between experiment and theory~microscopic solvability! re-
stricted to small surface tension anisotropies was carried
with conventional materials~pivalic acid and succinonitrile!
by analyzing the shape of growing dendritic tips@3–7#. The
surface tension anisotropy can be determined experimen
by analyzing the equilibrium shape of the interface. T
magnitude of the anisotropy was reported for ice@6#, pivalic
acid ~PVA! @7,8#, NH4Br @9#, succinonitrile~SCN! @7#, cam-
phene@3#, and for4He crystals@10,11#. The influence of the
kinetic coefficienthas been analyzed less, see, e.g.,@12#. Ex-
perimental studies were done on ammonium chloride@13#
and in particular using liquid crystals~see below!. The effect
of theanisotropic heat diffusionin the liquid phase~which is
also a specific feature of the liquid crystalline systems! to our
knowledge was first analyzed in@14#.

As a result of the varying influence of noise, surface te
sion, and kinetic effects one finds as a function of underco
ing morphological transitions. The resulting morphology d
grams have been studied by various theoretical approa
@15–22#.

In liquid crystalline phase transitions the effect of t
anisotropies on the pattern formation can be studied i
quite broad range, see, e.g.,@23#. The morphology diagram
was reported and experimental results on both the sur
tension and kinetic anisotropy have been given for colum
hexagonal liquid crystals@24,25#. In the smectic to crysta
phase transition the morphological transitions and the na
of mode selection were analyzed@26#. The morphology dia-
gram was also studied for very large twofold anisotropies
the surface tension in the nematic–smectic-B phase transi-
tion experimentally@27–29# and numerically@27,29# as well.

In the present paper we report on experimental and
merical ~using a phase-field model! results on the morphol
ogy of the interface of a smectic-B germ growing into a
nematic melt. This phase boundary has a very weak sur
tension anisotropy and kinetic anisotropy in the two arran
ments investigated: homeotropic smecticB in homeotropic
~HinH! and in planar~HinP! nematic.

In the HinH case we give an estimate of the sixfold a
isotropy of the surface tension and kinetic coefficient ba
on the numerical reproduction of the experimentally o
served morphologies.

In the HinP case the effect of the anisotropies on
pattern formation becomes a more complex problem. T
new features~compared to a crystal-liquid interface! origi-
nate from the additional anisotropy of the surrounding m
which is in our case the uniaxial nematic liquid crystal. Bo
angular functionss̃(u) and b̃(u) will be affected by the
nematic ordering, moreover the anisotropic heat diffusiv
causes a higher velocity in the direction of the low heat d
fusion ~‘‘inverted growth’’! which we explain here with nu
merical and analytical methods.

The investigated HinH and HinP geometries are differ
from the well-studied PinP and PinH arrangements@27–29#
where the surface tension anisotropy is orders of magnit
larger.
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II. DESCRIPTION OF THE EXPERIMENT

Quasi-two-dimensional liquid crystal cells with thickne
of 10 mm were used for investigation. By an appropria
treatment of the surface of the substrates homogenous p
or homeotropic initial alignment of the nematic director (nN)
was achieved. The cell was placed in a temperature c
trolled stage which had an accuracy of63 mK. The charac-
teristic thermal response/relaxation time of our experimen
system was basically determined by the heat conductivity
the glass plates and the heat capacity of the metal bloc
the hot stage. The exponential relaxation time was meas
and a typical value of a few tens of seconds was found. T
means that for the small undercoolings we mostly used,
temperature field applied can be regarded as nearly step
on the scale of the typical growth time of a germ. This
certainly valid in the HinP case, where the growth is slow
In the HinH geometry for the two highest undercoolin
~DT50.3 and 0.35! this could lead to a small temperatu
lag at the beginning of the growth which diminishes duri
the process.

The commercial~MERCK—ZLI 1185! substance CCH5
(4-n-pentyl-48-cyano-trans 1,1-bicyclohexane) we use
has a first-order nematic–smectic-B phase transition atTm
551.2 °C with latent heatL5(1761)103 J/kg. To charac-
terize the sample purity we determined the two-phase co
istence temperature region, which was found to be in all c
less than 0.3 °C. In order to estimate the heat diffusion
isotropy Da5(D i2D')/D' we took literature data mea
sured for substances of very similar molecular struct
~5CB and 8CB! for which the value ofDa'0.7 was found
@30,31# ~hereD i and D' denotes the heat diffusion coeffi
cient in the nematic phase parallel and perpendicular to
director, respectively!. Preliminary measurements@32# car-
ried out very recently on CCH5 show that here the value
Da is even larger. No pronounced dip inD' ~or D i) was
found at Tm , contrary to the case of theN–SA transition
where a dip was observed@31,33–35#. For references and
more details regarding the material parameters see@27#.

We mention that the anisotropy of the heat diffusion w
also measured for smectic phases and no significant effe
the long range smectic order was found@36#.

The preparation of homeotropic germs in the homeotro
nematic is not especially difficult since in the case of CC
some of the smectic germs nucleate spontaneously with
orientation. As reported in@27# the orientation of the smectic
germs is usually planar in the planar cell. In order to prep
homeotropic smectic germs in the planar cell one has to
ply some external field, i.e., electric. If a sufficiently larg
(E.106 V/m) electric field is switched on in the directio
perpendicular to the substrates during the melting of
smectic phase, the nematic director realigns~the dielectric
anisotropy of the substance is strongly positive! and becomes
homeotropically oriented. Smectic germs also turn ove
their diameter is below the cell thickness. After the germ h
turned over into the homeotropic orientation, one can
crease its size by a small decrease of the temperature. O
the germ has become large enough~its lateral dimensions
several times the cell thickness! one may turn off the electric
field and reach the configuration where a homeotropic sm
tic germ is in thermal equilibrium with the surrounding h
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meotropic or planar nematic phase~HinH or HinP cases!, by
adjusting the temperature of the system.

The growth morphologies were detected in a polariz
microscope equipped with a charge coupled device~CCD!
camera and an image processing device by applying an
dercooling in a range of 0.05° – 0.35°.

III. EXPERIMENTAL RESULTS

HinH configuration: the smectic germ has a nearly circ
lar shape in equilibrium with the homeotropic nematic. Fro
the minimization of the surface energy one expects a h
agonal modulation of the shape due to the symmetry of
smectic-B phase@37#. Taking only the first harmonic, the
surface tension can be written in the form

s̃~u!511
Ds̃6

2
cos~6u!, ~3.1!

where Ds̃6 is the dimensionless amplitude of the sixfo
modulation (Ds̃65s̃max2s̃min). The value ofDs̃6 turned
out to be extremely small experimentally. Since the shap
the thermally equilibrated interface was found to be pra
cally circular,Ds̃6 has to be smaller than 0.005, which fa
within the experimental uncertainty.

FIG. 1. Growing smectic germs in the undercooled homeotro
nematic~HinH!. The corresponding undercooling values are~a!–~f!
0.05 °C, 0.1 °C, 0.12 °C, 0.15 °C, 0.3 °C, and 0.35 °C, resp
tively. The numbers in the lower left corners of the pictures rep
sent the time elapsed after the onset of undercooling, which ar
min 7 s, 12 min 11 s, 3 min 43 s, 2 min 55 s, 1 min 9 s, and 59
respectively.
g
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Preparing a germ in equilibrium and then applying t
undercooling one observes the growth of the smectic ph
The experiment was repeated for different undercoolings
the range of 0.05 °C,DT,0.35 °C using the same germ. I
Fig. 1 we show a set of the observed shapes.

One can see that by increasing the undercooling the
served morphology changes from the surface tension st
lized hexagonal through a petal shape into the dendritic
the dense branching regime. The above morphological
quence is in good agreement with the morphological ph
diagrams predicted in@38,16#. Note that at large undercool
ing the envelope of the interface exhibits a hexagonal sh
with the same orientation of the long and short axes as
equilibrium.

Dendrites have been seen in a narrow range of underc
ing falling between 0.15 °C and 0.3 °C. An example of t
dendritic growth is shown forDT50.2 °C in Fig. 2~a!. Fig-
ure 2~b! shows one tip which was tracked for more than
min.

The above growth morphologies are somewhat differ
from those reported in@28,39# in the same HinH geometry
on the well-studied substance~CCH3!. In the present case
the hexagonal shape of the enveloping curve of the interf
is more pronounced. Moreover a stably growing parabolic
~dendritic shape! was detected here, which indicates that t
relevant material parametersDs̃6 ~and/orDb̃6) are larger in
the case of CCH5.

HinP configuration: if a homeotropic smectic germ is su
rounded by a planar nematic, one expects on symm
grounds a contribution of the twofold anisotropy to the s
face energy. Thus the expression~3.1! is now replaced by

ic

-
-
48
,

FIG. 2. Dendritic growth of a smectic germ at the undercooli
DT50.2 °C ~HinH!. ~a! Snapshot of a germ att51 min 17 s with
six dendritic tips,~b! snapshot of one of the tips att56 min 8 s,
same magnification as in~a!.
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s̃~u!511
Ds̃2

2
cos~2u!1

Ds̃6

2
cos~6u!. ~3.2!

The analysis of the observed equilibrium shape~Wulff con-
struction! gives a value forDs̃2 in the range between20.02
and20.06 (Ds̃2 is negative, because the reference direct
x has been chosen perpendicular tonN).

The result thatuDs̃2u is much larger thanuDs̃6u can be
understood from the fact that inDs̃2 an elastic energy from
the deformation zone between the two phases, where
planar nematic orientation changes to the homeotropic
involved. Depending on the angle between the surface
mal and the nematic director the principle deformatio
~twist, bend, and splay! contribute differently to this energy

The same set of experiments~as in the HinH case! was
repeated for undercoolings in a similar range ofDT. In Fig.
3 we show a set of the observed shapes.

One can see that for small undercoolings the morpho
gies are similar~apart from the fact that the shapes are m
irregular! to the HinH case, but at larger ones — where t
dendrites should develop — the growth and stabilization
the dendritic tips is suppressed in the direction parallel tonN
and enhanced in the direction perpendicular to it@see Figs.

FIG. 3. Growing smectic germs in the undercooled planar ne
atic ~HinP!. The nematic director is parallel toy ~vertical direction
in the figures!. The corresponding undercooling values are~a!–~f!
0.05 °C, 0.06 °C, 0.07 °C, 0.1 °C, 0.15 °C, and 0.2 °C, resp
tively. The numbers in the lower left corners of the pictures rep
sent the time elapsed after the onset of undercooling, which ar
min 2 s, 19 min 51 s, 18 min 36 s, 6 min 53 s, 3 min, and 2 mi
s, respectively.
n
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3~e! and 3~f!#. We note that the long axis of the envelopin
oval shape of the pattern turns over by 90° as a function
the driving force@compare Figs. 3~a! and 3~f!# similar to the
observation in viscous fingering experiments in planar sm
tic liquid crystals@40,41#. In this respect the dependence
the twofold shape modulation on undercooling is differe
from the sixfold one, as observed in the HinH germs. A
other peculiarity is that at undercoolingsDT>0.2 °C in
some parts of the growing germ~with surface normal close
to the y direction! one has imperfect extinction indicatin
that the orientation of the smectified substance deviates f
the homeotropic@e.g., in Fig. 3~f!, upper parts of the smecti
phase#. Probably in this regime the time available for a mo
ecule to be attached to the growing crystal (2 – 531025 s as
inferred from the observed velocity! becomes comparable t
the typical times of the molecular rotation.

IV. ESTIMATE OF THE RELEVANT ANISOTROPIES
FROM NUMERICAL SIMULATIONS

OF A PHASE-FIELD MODEL

It was shown in several recent papers that phase-fi
models provide a useful basis when describing diffusion li
ited processes, e.g., crystallization@21,42#. A good reproduc-
tion of experimentally observed shapes of a crystal grow
under well-controlled conditions was reported by using t
model and including the experimentally determined mate
parameters@43,27,29#. In the model a new parameterf, the
‘‘ phase field,’’ describes the difference between the tw
phases beingf51 andf50 corresponding to the nemati
and smectic phases, respectively. It is the basic featur
phase-field descriptions thatf changes continuously in spac
forming a boundary layer between the solid and liqu
phases. This variation is rapid but smooth in the vicinity
Tm . We mention that in the limit of zero interface thickne
this leads to the sharp interface description which could
interpreted as a jump inf. The dynamics off is derived
from the variation of a Ginzburg-Landau type free ener
functional. We use a set of equations derived in@44#, where
the dynamics satisfies a locally positive entropy producti
resulting in the correct latent heat production. In addition
have included in the model the anisotropic heat diffus
which is relevant in the HinP case. The pair of coupled eq
tions for the phase fieldf(r ,t) and dimensionless tempera
ture u(r ,t) can be written in dimensionless units introduc
before as follows:

e2t0b̃~u!s̃~u!
]f

]t
5f~12f!S f2

1

2
130eaDuf~12f! D

2e2
]

]x S s̃~u!s̃8~u!
]f

]y D
1e2

]

]y S s̃~u!s̃8~u!
]f

]x D
1e2

“@s̃2~u!“f#, ~4.1!

]u

]t
1

1

D
30f2~12f!2

]f

]t
5D̃ i¹ i

2u. ~4.2!

-

-
-
52
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The first term on the right hand side of Eq.~4.1! can be
written as2dm/df, where the potentialm~f! has minima at
f51 andf50. The potential depends parametrically onu.
For u,0 the minimum atf51 is lower than the one atf
50 ~and vice versa!. The equation describes the evolution
the system to the lower minimum in the presence of a su
ciently large germ. The heat diffusion equation~4.2! includes
a source term that describes the latent heat production.†Note
that in the Ginzburg-Landau description of phase transiti
the traditional choice of the analogous~order! parameter
would be c512f, such thatc51 in the more ordered
phase. In order to be consistent with previous work@44# we
keepf.‡ u is the angle between thex axis and the gradient o
the phase field. The additional dimensionless parameter
the model are

e5
d

v
, D̃ i5

Di

D'

, ~4.3!

where d is the interface thickness. The sharp-interface
scription is recovered from the phase-field model in the lim
whereu varies slowly overe. A correction to this asymptotic
limit has been derived recently for the kinetic term@45#.
Since in our experiments the director of the smectic phas
always perpendicular to the bounding plates the heat di
sion in this phase is supposed to be isotropic in the plan
the layer (xy plane! with the ~dimensionless! diffusion coef-
ficientsD̃x5D̃y51. In the planar nematic phase one has
isotropic heat diffusion in thexy plane with the principle-
axis diffusion coefficientsD̃x51 and D̃y511Da if the
director is parallel to they direction ~see Fig. 3!. Since we
assume the heat diffusion coefficients to be the same in
phases the change in the heat diffusion coefficient at
interface comes from the change in the orientation of
director. Having a thin interfacial region in thexy plane, the
heat diffusion should change at the phase boundary f
isotropic to anisotropic continuously in space withf. Thus
we set

D̃x51, D̃y511Daf. ~4.4!

Since the temperature of the system varies in a narrow ra
below the phase transition temperature~small undercool-
ings!, we neglect the temperature dependence of the mat
parameters~including the heat diffusion coefficient! in the
simulations.

The two equations~4.1! and~4.2! were solved on a squar
lattice of 8003800 grid points. In order to ensure numeric
stability Eq. ~4.2! has been solved using the alternating
rection implicit ~ADI ! method. Since the phase transitio
takes place at the interface, and the time derivative of
temperature field in Eq.~4.2! is small far away from the
interface, one could reduce the computational time by so
ing only Eq. ~4.2! far from the crystal phase on a ‘‘rough
lattice while takingf51 there, and solving both equation
on a fine scale in the remaining region. We have chose
critical valueuc520.9. Foru,uc we used a rough lattice
while for u.uc we solved both equations on a fine lattic
Of course at the boundary of these two regions one ha
match the value ofu.
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Initial conditions were chosen as follows:f51, u521
all over the two-dimensional~2D! space but one pixel with
f5u50 in the center of the system. This initial state relax
after a transient into a configuration where both parame
~u andf! are continuous in space near the phase bound
Since the system is in contact with an undercooled ther
bath at its boundaries~wheref51, u521) the phase tran-
sition front moves outwards from the center. The only h
source in the system is the latent heat, which is release
the perimeter of the germ. This heat production acts aga
the effect of the surrounding thermal bath thus preventing
germ from cooling down and keeping it nearly isotherm
nearu50.

The fine spatial discretization was chosen asDx5Dy
50.005 while the time step wasDt50.0001. The phase-field
constants werea5350, e50.005,t520, the mesh spacing
of the ‘‘rough’’ lattice was 10Dx. These parameters includ
ing the relevant range ofD were adjusted in an analogou
simulation carried out for the planar germ of the same s
stance @29,27#. For computational reasons, the simulat
germs were about one to two orders of magnitude sma
than the experimental ones.~The exact size in physical unit
depends on the capillary lengthd0 , which is unknown be-
causes0 is not known.! To partially compensate this differ
ence in size the undercooling in the simulations has to
taken larger than in the experiments.

Actually there is no strict scaling of Eqs.~1.4!, ~1.5! or
~4.1!, ~4.2! connecting the germ size, expressed in dime
sionless units bya @see Eq.~1.9!#, with the ~dimensionless!
undercoolingD. However, if the temperature field is treate
adiabatically, i.e.,]u/]t is neglected, then there is the sca
ing D→gD, a→a/g, t→t/g, t0→t0 /g. Treating the tem-
perature field adiabatically appears to reproduce the
narios qualitatively. The rescaling of the coefficientt0 of the
kinetic term is at this point of no consequence, since we w
uset0 as an adjustable parameter.

HinH configuration: in this geometry the surface tensio
is given by Eq.~3.1!. In order to properly choose the value o
Ds̃6 we initially disregard the anisotropy of the kinetic effe
by takingb̃(u)51. Then we should concentrate on the slo
growth regime where the growth morphology is dominat
by s̃(u).

Taking a valueDs̃650.004, just below the upper limi
allowed by the experiments, the dendritic character of

FIG. 4. The shape of a growing crystal with hexagonal surfa
tension anisotropy and isotropic linear kinetic term. Pixel sizeDx
5Dy50.005.
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simulated interface was much more pronounced than exp
mentally observed for any undercooling~compare Fig. 4
with Figs. 1 and 2!.

Consequently this is an overestimate ofDs̃6 . We reduced
the value until we could reproduce the shape of the interf
for small undercoolings, which occurred atDs̃650.001
@compare Fig. 5~a! with Fig. 1~a!#. For larger undercoolings
the hexagonal symmetry ofs~u! is suppressed by the isotro
pic kinetics, and the morphology is not reproduced@see Fig.
5~b! and Fig. 1~f!#. In Fig. 5~b! the slight fourfold modula-
tion of the shape results from the anisotropy introduced
the square lattice. Though the corresponding effect of a h
agonal lattice would be smaller, we used the square lat
because we wanted to ensure that hexagonal shapes a
troduced only by the physical effects, e.g., symmetry of
SB phase. Furthermore, we added spatially and tempor
uncorrelated noise with an amplitude of 0.01 to the tempe
ture fieldu(r ,t) in each time step. This perturbation reduc
the effect of the fourfold lattice anisotropy. The value of t
noise was tuned until its effect smeared the fourfold anis
ropy induced by the square lattice.

In order to reproduce the strong hexagonal symmetry
the experimentally observed shapes at larger undercoo
@Figs. 1~e! and 1~f!#, we take into account anisotropic kine
ics. Considering the experimentally obtained shapes we
sume an analogous angular dependence of the kinetic c
ficient to that of the surface tension

b̃~u!511
Db̃6

2
cos~6u!. ~4.5!

Using Eqs.~4.5! and ~3.1! we get from Eq.~1.7!

uinterface52
&

12aD H S 12
35

2
Ds̃6cos~6u! Dk

1t0S 11
1

2
Db̃6cos~6u! D vnJ , ~4.6!

which indicates that in case ofDs̃6.0 one needsDb̃6,0 in
order to reproduce the experimentally observed orienta
of the hexagon~as mentioned before, there was no change
the orientation of the hexagonal enveloping boundary cu
of the germ with increasingDT, contrary to@46#!. The mag-
nitude ofDb̃6 has been adjusted until the simulation resul

FIG. 5. The shape of growing crystals with hexagonal surf

tension anisotropy and isotropic linear kinetic term, usingDs̃6

50.001. The units are pixels.
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in shapes similar to the experiments, which led toDb̃6
520.006. Figure 6 shows the numerical results, which
in good qualitative agreement with Fig. 1. We mention th
changing the value of the parametersDb̃6 and Ds̃6 by a
factor of 2 results in a substantial variation of the shap
obtained by the simulations, which characterizes the typ
sensitivity of the method.

We point out that the role of the anisotropic kinetics c
be imitated in the simulation~artificially! by letting Ds̃6
depend on undercooling. The same set of morphologies a
Fig. 6 can be reproduced by taking isotropic kinetics (Db̃6

50) and varying the surface tension anisotropy (Ds̃6
50.001, 0.0016, 0.0016, 0.002, 0.002, and 0.004, co
sponding to the undercoolings given in Fig. 6!. This
assumption—though unphysical—supports the choice of
hexagonally symmetricb̃(u) function given in Eq.~4.5!.

When modeling theHinP configurationone should in-
clude three additional effects~compared to the HinH geom
etry! which we will analyze separately.

~1! The twofold contributionDs̃2 . Using the largest an-
isotropy compatible with the equilibrium-shape measu

e

FIG. 6. The shape of growing crystals with hexagonal surfa
tension anisotropy and hexagonal anisotropic linear kinetic te

Ds̃650.001 andDb̃6520.006. The value of the dimensionles
undercooling~D! and the elapsed time are indicated on the pictur
The units are pixels.
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ments (Ds̃2520.06, see above! and the other input param
eters the same as in Fig. 6, the numerically obtained sh
are shown in Fig. 7. As can be seen this effect causes
elongation of the growing germ in the direction parallel
the nematic director at any undercooling. Note that the tw
fold shape anisotropy is still visible at the largest underco
ing contrary to the sixfold one, which vanishes; this is pro
ably due to the relatively large value ofDs̃2 compared to
Ds̃6 ~compare Figs. 5 and 7!. Since the experimentally ob
served shapes show for largeDT an elongation in the per
pendicular direction, a different mechanism has to be op
tive there.

~2! The kinetics of the phase transformation is suppo
to depend on the angle enclosed by the surface normal
the nematic director. This effect can be described by incl
ing a twofold modulation of the kinetic term (Db̃2) in anal-
ogy to the surface tension. We include a smallDb̃2 with
negative sign, which will result in an elongation of th
growth shape as experimentally observed, and which
also be understood intuitively, as will be seen later~Sec. V!.
In the absence of experimental information about the ma
tude of this effect we use the same amplitude~6%! as in the
case of the surface tension modulation. In Fig. 8 the resul

FIG. 7. The shape of growing crystals with hexagonal and tw
fold surface tension anisotropy and hexagonal anisotropic lin

kinetic term:Ds̃650.001, Ds̃2520.06, andDb̃6520.006. The
value of the dimensionless undercooling~D! and the elapsed time
are indicated in the plots. The units are pixels.
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morphologies are shown. In these simulations we have
Ds̃250. The twofold modulation of the kinetic term caus
a slight elongation of the shape in the direction perpendicu
to the nematic director~as observed experimentally!, but
does not reproduce the rapidly growing two dendrites p
pendicular to the nematic director.

~3! As already mentioned in the introduction of the phas
field model, the heat diffusion in the planar nematic lay
~the xy plane! is anisotropic. Since in the experiments w
have a thin layer of liquid crystal between two glass plat
we should take into account the heat flow through the bou
ing plates~along z) too. The heat conductivity of the glas
plates is of the same order as that of the nematic~and it is
isotropic!. The effect of the heat flow in thez direction could
be modeled by introducing a heat dissipative term~linear
with u) into Eq. ~4.2! @47#. As it was checked by numerica
calculations this term reduces the effect of the heat diffus
anisotropy on the growth shapes. For simplicity we he
keep Eq.~4.2! and account for this effect by taking a reduc
~effective! value for Da in the two-dimensional model sys
tem. It turned out that the value ofDa50.5 causes a very
strong elongation of the enveloping curves of the interface
the direction ofx. To demonstrate that a relatively small he
diffusion anisotropy already has an effect on the shape of

-
ar

FIG. 8. The shape of growing crystals with hexagonal surfa
tension anisotropy and hexagonal anisotropic linear kinetic te

Ds̃650.001, Db̃6520.006, andDb̃2520.06. The value of the
dimensionless undercooling~D! and the elapsed time are indicate
in the pictures. The units are pixels.
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growing germs in a pure two-dimensional system, we sh
the simulation results withDa50.2 ~andDs̃25Db̃250) in
Fig. 9. One sees that already at this low value ofDa the heat
diffusion anisotropy at any undercooling causes a stron
elongation of the shape than the kinetic effect did, and it is
fact comparable to the effect ofDs̃2 ~Fig. 7!.

The effect of the heat diffusion anisotropy might appear s
prising: those tips move faster which grow in the direction
the smaller heat diffusion~‘‘inverted growth’’!.

To analyze the problem of the ‘‘inverted growth’’ w
studied ~numerically! a simplified situation in whichDs
50 andDb50, the only nonzero anisotropy isDa50.5 with
D̃x,D̃y . We started with a circular germ in two differen
initial conditions.~A! Steplike temperature and phase field
the interface of the crystal (u5f50 inside the germ and
u521, f51 outside!. This assumption could model th
experimental case where the germ nucleates in the un
cooled nematic. However, one should be aware that this s
ation can become realistic only after an initial transient d
ing whichu(r ) is smoothed out and becomes slowly varyi
over the lengthe. ~B! The temperature fieldu is constant
~zero! in the whole system except at the boundaries wher

FIG. 9. The shape of growing crystals with hexagonal surf
tension anisotropy and hexagonal anisotropic linear kinetic term

the presence of heat diffusion anisotropy in the liquid phase.Ds̃6

50.001,Db̃6520.006, andDa50.2. The value of the dimension
less undercooling~D! and the elapsed time are indicated in t
plots. The units are pixels.
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is set to21, whilef is steplike as in the previous case. Ca
B models the experimental situation when a single germ
equilibrium comes into contact with a colder system at
boundaries.

In Fig. 10 the distance of the interface from the center
the initially circular germ is plotted versus time in the tw
principle (x andy) directions. CurvesA andB represent the
two cases. We chose two different initial radii~50 in caseA
and 160 in caseB! in order to produce similar sizes in th
later stages.

In caseA the germ becomes elongated in the direction
the smaller heat diffusion coefficient (x) ~inverted growth!
from the beginning on. In caseB one has initially ‘‘normal
growth,’’ i.e., faster in the direction of larger diffusion con
stant. Subsequently there is a crossover to inverted grow

To understand the inverted growth it is useful to introdu
a coordinate system with rescaled coordinatey8

5(D̃x /D̃y)
1/2y, while x85x. In this representation diffusion

is isotropic, consequently Eqs.~1.5! and~1.6! can be used as
they stand for the isotropic case. In Eq.~1.7! k must be
replaced bys(u8)k8 andvn by w(u8)vn8 , wherek8 andvn8
are the curvature and normal velocity in the new coordina
and

s~u8!5S D̃y

D̃x

D 1/2F 11S D̃y

D̃x

21D cos2u8G23/2

,

~4.7!

w~u8!5F11S D̃y

D̃x

21D cos2u8G21/2

.

@Also in s̃(u) and b̃(u) one has to eliminateu by the rela-
tion tanu5(D̃y /D̃x)

1/2 tanu8.# Thus the effect of the heat dif
fusion anisotropy can be absorbed, apart from rescaling
an additional twofold surface tension and kinetic anisotro
with ‘‘easy axis’’ along x ~for D̃y.D̃x). Clearly this will
enhance~speed up! growth in thex direction. In particular,
for s̃51, the heat diffusion anisotropy alone induces de

e
in

FIG. 10. The distance of the interface as a function of time
two directions (x and y) measured from the center of the startin
germ. The initial germs were circular with the radius of 50~case A!
and 160~case B! grid points, the undercooling valuesD50.15 in
case A whileD50.2 in case B. The phase field parameters w
a5315, e50.005,t0518. The spatial unit is a pixel.
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dritic growth in thex direction. This then explains the in
verted growth. The observation that under some conditi
one has initially a transient normal growth can be explain
by the fact that for those conditions it takes some time for
instability to develop. Thus in caseB cooling at the bound-
aries of a square region~in the x, y coordinates! first has to
become effective at the location of the germ, so here
better heat diffusion alongy dominates the initial evolution

The effect of the heat diffusion anisotropy has been st
ied previously in a different geometry~planar smectic in pla-
nar nematic! @14# where nonreflection symmetry of the fou
armed dendrites was observed experimentally
reproduced numerically. The growth of dendritic tips w
also favored in the direction with smaller heat diffusion c
efficient.

V. CONCLUDING REMARKS

We found different growth morphologies~among them
dendritic! of a growing smectic-B phase in the undercoole
nematic, depending on the undercooling in a system w
hexagonal symmetry~HinH! with very small surface tension
anisotropy. By comparing these morphologies with the
sults of computer simulations using a phase-field model~in-
cluding anisotropic surface tension and an anisotropic lin
kinetic term! we estimated the value of the amplitude of t
sixfold surface tension and kinetic anisotropies. The res
ing values areDs̃650.001 andDb̃6520.006. The opposite
sign of the two parametersDs̃6 andDb̃6 describes the fac
that the six preferred directions in the surface tension do
nated and the kinetic regime are the same@see Eqs.~1.6! and
~1.7!#. This is in accordance with the assumption that
phase transformation kinetics of the molecules is the slow
on the sides parallel to the hexagonal lattice directions,
cause it is more difficult to begin to build a new layer, th
to continue an existing one at the ‘‘corners.’’

On the contrary, in the experiments on columnar hexa
nal liquid crystals@25# the hexagonal shapes of the crystal
low ~surface tension controlled regime! and at high~kinetic
regime! undercoolings were rotated by 30° with respect
each other, which means that the sign of the two parame
Ds̃6 andDb̃6 was the same. However, the magnitude of
anisotropies reported in@25# (Db̃651.1231022 and Ds̃6
5631023) is similar to our result.

The HinP geometry must be induced by an external e
tric field since in most cases~for several different sub-
stances! the smectic phase nucleates in the form of planar~or
tilted! germs even in cells with homeotropic orientatio
,

s
d
e

e

-

d

-

h

-

ar

t-

i-

e
st
e-

-
t
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e

c-

@27,39#. Elongated growth shapes of the smectic germs w
found. For small undercooling the long axis of their env
oping curve was parallel to the nematic director, while
large undercooling it was found perpendicular to the direc
In the last case the development of stable dendritic tips al
the long axis of the enveloping curve is favored, whereas
suppressed in the direction parallel to the nematic director
the development of these elongated shapes apparently
effects act simultaneously:~1! the twofold modulation of the
surface tension of the nematic–smectic-B interface,~2! the
phase transformation kinetics where one should take into
count the reorientation of the molecules during the crysta
zation process, and~3! the anisotropic heat diffusion in th
nematic phase.

Since the long and short axes of the twofold shape ani
ropy interchange with increasing undercooling the signs
Db̃2 andDs̃2 (,0, see above! must be the same@see Eqs.
~1.6! and~1.7!#. Thus, when the surface is oriented parallel
the nematic director so that the reorientation of the direc
involves mainly twist~low-surface tension part!, the kinetics
should be faster than when the reorientation involves ma
splay. This appears indeed plausible because the evolutio
a twist distortion involves no backflow, in contrast to th
evolution of splay@48#. Alternatively, on the molecular level
one might argue that the development of the twisted interf
involves only rotation of molecules, whereas in the develo
ment of the splayed part most of the rodlike molecules ad
tionally have to undergo a center-of-mass motion.

The effect of anisotropy of heat diffusion is to induc
possibly after an initial transient, faster growth of a germ
the direction of low heat diffusion. Also dendritic growth
favored in this direction.

Comparing these three effects at finite undercooling
found that the actual surface tension modulation acts op
sitely compared to the other two. At not too small underco
ing both the kinetic and the diffusion anisotropy result
similar shapes as observed experimentally. In order to se
rate the two, further measurements should be done to de
mine the kinetic anisotropy and the actual heat diffusion
isotropy in the specified geometry.
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